European flagship Action for coLd ironING in ports



Co-financed by the Connecting Europe Facility of the European Union

# EALING Studies - Activities 2 & 3

### SEAFUTURE – EALING West Med Macro Regional Workshop

#### 30 September 2021



### Activity 2 – Maritime fleet adaptation

### Activity 3 – FEED studies





# Activity 2



## **Partners**

#### 1. Activity 2 – Maritime fleet adaptation









Co-financed by the Connecting Europe Facility of the European Union

PIRAEUS POR AUTHORITY S.A

# Activity 2 - Main tasks

- Focus on ensuring and facilitating the port to vessel compatibility for OPS adaptation
- Identify and study the electrical standards and regulatory framework on an adhoc basis as per port/vessel

- Study several
  scenarios (various
  arrangements /
  different vessel types)
- Recommend best practices for required vessel retrofit under a cost-benefit analysis consideration

Provide operational recommendations, taking IMO guidelines as a reference, for a harmonized technical, legal and regulatory framework on fleet electrification adaptation, leading to a final proposal to IMO.



# Activity 2 - Main steps to reach the goal

#### QUESTIONNAIRES - INTERVIEWS

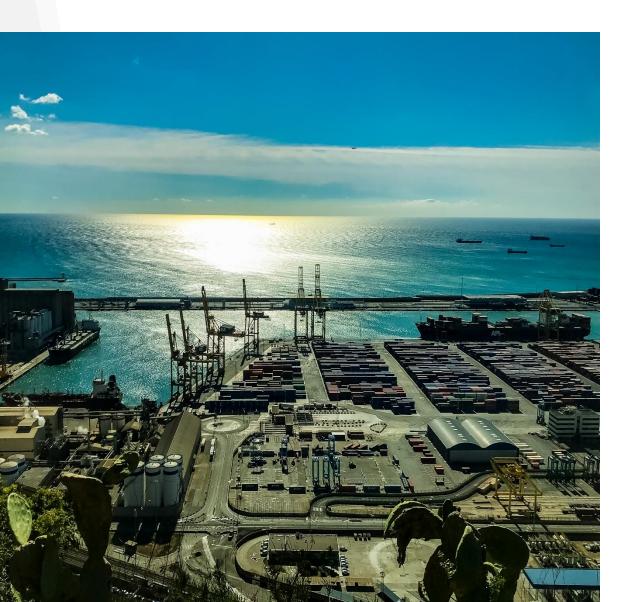
Detailed research via the formulation of questionnaires distributed to shipping lines, shipowners, classification societies, flag administrations.

- General Info / Fleet Identification
- Technical Data / Power Requirements
- Regulatory / Financial Info

• WORKSHOP WITH SHIPPING LINES/ASSOCIATIONS

Communication channel with Shipping lines and Shipping Associations

- OPS experience so far
- Challenges / Opportunities
- Feedback / Thoughts sharing




# Activity 2 - Main steps to reach the goal

#### ► ANALYSIS OUTCOME

Identification of the relevant technical, regulatory and financial elements to facilitate adaptation/connectivity of vessels to shore side electricity.





#### 1. Activity 2 – Maritime fleet adaptation

### **Actions so far:**

- Activity 2 KoM to identify tasks / time plan / workflow
- Very close cooperation with Activity 1 to identify relevant tasks between Act.1 & Act.2 / optimize tasks execution / avoid overlaps and create opportunities.
- Completion of the questionnaires for Shipping Lines / Classes / Flags
- Workshop with Shipping Lines
- Questionnaires distribution completion beginning of data collection

### **Next Steps:**

- Questionnaires data collection completion
- Analysis of data collected
- Act. 2 progress meeting





# **Questionnaires task - A brief description:**

Questionnaire No.1

Questionnaire No.2

#### Addressed to Shipping Lines

- Shipping lines visiting the Ports of the consortium have been contacted
- More than 100 contacts
- **a General Information** *Fleet Identification* **b - Technical Aspects** - *OPS maturity level, power requirements etc.*
- **c Regulatory / Admin Aspects** Financial information, regulatory challenges etc.

#### Addressed to Classification Societies and Flag Registries

- IACS members and Flags representing visiting Shipping Lines contacted
- a General Entity Information
- **b** Technical Aspects
- c Regulatory / Admin Aspects
- d Training





# Workshop task - A brief description:

- More than 80 participants
- > Project partners
- > Associations (CINEA, EU MoS, DG MOVE, EMSA, ECSA)
- Shipping Lines representatives
- Institutional Session
- EALING Session
- Shipping Lines session





# Activity 3



# Activity 3 - Main tasks

- Execute the detailed technical design studies for the electrification infrastructure necessary for the ports of the consortium.
- The implementation of front-end engineering design (FEED) studies providing the fully defined engineering package needed to enable ports launching the works phase right after the end of the Action.

- FEED studies will include:
  - specifications for main primary and secondary equipment
  - cost estimation for procurement and erection of the future cold ironing and electric bunkering infrastructure
  - technical design studies providing planning design, final specifications for equipment and infrastructure, and final budget





## **Activity 3 – FEED Studies Piraeus Port**

#### Potential Scenarios – Alternative 1





# Activity 3 – FEED Studies Piraeus Port

#### Potential Scenarios – Alternative 2



#### OPS 1:

- TR of "Tzelepi SS": 630kVA -> 1600kVA
- Installation of MV Panels, TRs & F.C.
  - Containerized Solution
  - Existing Building

#### OPS 2, 3:

- TR of "Ag. Dionisis SS": 400kVA -> 2000kVA
- OPS 3 LVSC (750 kVA)
- Installation of MV Panels, TRs & F.C. - Containerized Solution (2 Containers)

#### OPS 4:

- TR of "Elektiria SS": 630kVA -> 3000kVA
- OPS 3 LVSC (750 kVA)
- Installation of MV Panels, TRs & F.C. - Containerized Solution

#### OPS 5:

- TR of "3o Dock SS": 1600kVA -> 6000kVA
- Installation of MV Panels, TRs & F.C.
  - Containerized Solution
  - Installation at 3 Dock SS Building

# Activity 3 – FEED Studies Rafina Port

#### Conceptual Design

- Main cold ironing Substation
- ▶ Building 200 m2
- ▶ Total Power 4 MVA
- ▶ 2 HVSC positions (1.5 MVA)
- ▶ 2 LVSC positions (0.5 MVA)





# Activity 3 – FEED Studies Constanta Port

#### OPS position information

| Berth     | Vessel Type  | Load Demand<br>[MW] | OPS<br>positions | frequency<br>(Hz) |
|-----------|--------------|---------------------|------------------|-------------------|
| 121       | Container    | 5                   | 1x5MW            | 60                |
| 120       | Ro-Ro        | 3                   | 3x1MW            | 60                |
| PL6       | Ro-Ro        | 3                   | 3x1MW            | 60                |
| Passenger | Passenger    | 5                   | 1x5MW            | 60                |
| 114       | Bulk         | 3                   | 3x1MW            | 60                |
| 123       | Container    | 5                   | 1x5MW            | 60                |
| 119       | Multipurpose | 3                   | 3x1MW            | 60                |
| 44        | Multipurpose | 3                   | 3x1MW            | 60                |
| 35.36     | Multipurpose | 3                   | 3x1MW            | 60                |
| CL        | Tanker       | 10                  | 2x5MW            | 60                |

#### OPS position location





# Activity 3 – FEED Studies Burgas & Varna Ports

#### OPS position location Burgas



| Position<br>number | Berth                           | Vessel Type                           | Berthing<br>time |
|--------------------|---------------------------------|---------------------------------------|------------------|
| 1                  | Passen Terminal                 | passenger                             | 1-10 days        |
| 2                  | Burgas East 1 Port<br>Terminal  | General/Bulk Cargo                    | 1-5 days         |
| 3                  | Burgas East 2 Port<br>Terminal  | General/Dry Bulk/liquid bulk<br>Cargo | 1-5 days         |
| 4                  | Burgas East 2A Port<br>Terminal | General/Bulk Cargo                    | 1-8 days         |
| 5                  | Burgas West Port<br>Terminal    | General cargo/Containers              | 1-8 days         |



# Activity 3 – FEED Studies Burgas & Varna Ports

#### OPS position location Varna



| Position<br>number | Berth                            | Vessel<br>Type         | Berthing<br>time |
|--------------------|----------------------------------|------------------------|------------------|
| 1                  | Varna East Port<br>Terminal      | General/B<br>ulk Cargo | 1-8 days         |
| 2                  | Ferry Terminal                   | Ro-Ro                  | 1-6 days         |
| 3                  | Varna East<br>Passenger Terminal | Passenger              | 1-5 days         |





# **Activity 3 – FEED Studies Consortium Ports**

#### Studies Progress

| Port        | Studies initiation dates | Studies completion (estimation) |
|-------------|--------------------------|---------------------------------|
| Barcelona   | 06-21                    | 07-22                           |
| Valencia    | 06-21                    | 09-22                           |
| Huelva      | 06-21                    | 09-22                           |
| Gijon       | 06-21                    | 05-22                           |
| Venice      | 09-21                    | 04-22                           |
| Trieste     | 08-21                    | 04-22                           |
| Ancona      | 06-21                    | 10-21                           |
| Irish ports | 01-22                    | 12-22                           |
| Leixoes     | 05-21                    | 12-22                           |
| Acores      |                          | 12-22                           |
| Koper       | 05-21                    | 12-22                           |



# Thanks!



# European flagship Action for coLd ironING in ports

#### Contacts

Mr. Astrinos Papadakis - HYDRUS ENGINEERING SA Mechanical Eng. / R&D Coordinator a.papadakis@hydrus-eng.com

Mr. Stefanos Dallas - PROTASIS SA *Technical Project Manager* sdallas@protasis.net.gr

Discover more at www.ealingproject.eu



Co-financed by the Connecting Europe Facility of the European Union

The design of the set of the set of the set of the Annual the Annual is not seen with the set of the the set of the set o